Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)

Identifieur interne : 000090 ( PascalFrancis/Corpus ); précédent : 000089; suivant : 000091

Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)

Auteurs : Mijeong Park ; William J. Randel ; Louisa K. Emmons ; Nathaniel J. Livesey

Source :

RBID : Pascal:09-0250319

Descripteurs français

English descriptors

Abstract

[1] Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ∼12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (∼16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 114
A06       @2 D8
A08 01  1  ENG  @1 Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)
A11 01  1    @1 PARK (Mijeong)
A11 02  1    @1 RANDEL (William J.)
A11 03  1    @1 EMMONS (Louisa K.)
A11 04  1    @1 LIVESEY (Nathaniel J.)
A14 01      @1 Atmospheric Chemistry Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A14 02      @1 Jet Propulsion Laboratory, California Institute of Technology @2 Pasadena, California @3 USA @Z 4 aut.
A20       @2 D08303.1-D08303.11
A21       @1 2009
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000188450170370
A44       @0 0000 @1 © 2009 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 09-0250319
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ∼12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (∼16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.
C02 01  3    @0 001E
C02 02  2    @0 001E01
C02 03  2    @0 220
C03 01  2  FRE  @0 Transport @5 01
C03 01  2  ENG  @0 transport @5 01
C03 01  2  SPA  @0 Transporte @5 01
C03 02  2  FRE  @0 Monoxyde carbone @5 02
C03 02  2  ENG  @0 carbon monoxide @5 02
C03 03  X  FRE  @0 Monoxyde de carbone @2 NK @2 FX @5 03
C03 03  X  ENG  @0 Carbon monoxide @2 NK @2 FX @5 03
C03 03  X  SPA  @0 Carbono monóxido @2 NK @2 FX @5 03
C03 04  X  FRE  @0 Mousson été @5 04
C03 04  X  ENG  @0 Summer monsoon @5 04
C03 04  X  SPA  @0 Monzón verano @5 04
C03 05  2  FRE  @0 Modèle @5 05
C03 05  2  ENG  @0 models @5 05
C03 05  2  SPA  @0 Modelo @5 05
C03 06  2  FRE  @0 Ozone @5 06
C03 06  2  ENG  @0 ozone @5 06
C03 06  2  SPA  @0 Ozono @5 06
C03 07  2  FRE  @0 Traceur @5 07
C03 07  2  ENG  @0 tracers @5 07
C03 07  2  SPA  @0 Trazador @5 07
C03 08  X  FRE  @0 Observation par satellite @5 08
C03 08  X  ENG  @0 Satellite observation @5 08
C03 08  X  SPA  @0 Observación por satélite @5 08
C03 09  2  FRE  @0 Troposphère @5 09
C03 09  2  ENG  @0 troposphere @5 09
C03 10  2  FRE  @0 Stratosphère @5 10
C03 10  2  ENG  @0 stratosphere @5 10
C03 10  2  SPA  @0 Estratosfera @5 10
C03 11  X  FRE  @0 Anticyclone @5 11
C03 11  X  ENG  @0 Anticyclone @5 11
C03 11  X  SPA  @0 Anticiclón @5 11
C03 12  2  FRE  @0 Circulation @5 12
C03 12  2  ENG  @0 circulation @5 12
C03 13  2  FRE  @0 Air @5 13
C03 13  2  ENG  @0 air @5 13
C03 14  2  FRE  @0 Pollution @5 14
C03 14  2  ENG  @0 pollution @5 14
C03 14  2  SPA  @0 Polución @5 14
C03 15  2  FRE  @0 Altitude @5 15
C03 15  2  ENG  @0 altitude @5 15
C03 15  2  SPA  @0 Altitud @5 15
C03 16  X  FRE  @0 Tropopause @5 16
C03 16  X  ENG  @0 Tropopause @5 16
C03 16  X  SPA  @0 Tropopausa @5 16
C03 17  2  FRE  @0 Monde @5 17
C03 17  2  ENG  @0 global @5 17
C03 17  2  SPA  @0 Mundo @5 17
C03 18  X  FRE  @0 Champ météorologique @5 18
C03 18  X  ENG  @0 Meteorological field @5 18
C03 18  X  SPA  @0 Campo meteorológico @5 18
C03 19  2  FRE  @0 Simulation @5 19
C03 19  2  ENG  @0 simulation @5 19
C03 19  2  SPA  @0 Simulación @5 19
C03 20  X  FRE  @0 Eté @5 20
C03 20  X  ENG  @0 Summer @5 20
C03 20  X  SPA  @0 Verano @5 20
C03 21  2  FRE  @0 Hyperfréquence @5 21
C03 21  2  ENG  @0 microwaves @5 21
C03 22  3  FRE  @0 Chimie atmosphérique @5 22
C03 22  3  ENG  @0 Atmospheric chemistry @5 22
C03 23  2  FRE  @0 Etude expérimentale @5 23
C03 23  2  ENG  @0 experimental studies @5 23
C03 24  2  FRE  @0 Transformation Fourier @5 24
C03 24  2  ENG  @0 Fourier transformation @5 24
C03 25  2  FRE  @0 Convection @5 25
C03 25  2  ENG  @0 convection @5 25
C03 25  2  SPA  @0 Convección @5 25
C03 26  2  FRE  @0 Asie Sud Est @2 NG @5 61
C03 26  2  ENG  @0 Southeast Asia @2 NG @5 61
C03 27  2  FRE  @0 Inde @2 NG @5 62
C03 27  2  ENG  @0 India @2 NG @5 62
C03 27  2  SPA  @0 India @2 NG @5 62
C03 28  2  FRE  @0 Moyen Orient @2 NG @5 63
C03 28  2  ENG  @0 Middle East @2 NG @5 63
C03 28  2  SPA  @0 Oriente Medio @2 NG @5 63
C07 01  2  FRE  @0 Asie @2 564
C07 01  2  ENG  @0 Asia @2 564
C07 01  2  SPA  @0 Asia @2 564
N21       @1 187
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 09-0250319 INIST
ET : Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)
AU : PARK (Mijeong); RANDEL (William J.); EMMONS (Louisa K.); LIVESEY (Nathaniel J.)
AF : Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.); Jet Propulsion Laboratory, California Institute of Technology/Pasadena, California/Etats-Unis (4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2009; Vol. 114; No. D8; D08303.1-D08303.11; Bibl. 3/4 p.
LA : Anglais
EA : [1] Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ∼12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (∼16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.
CC : 001E; 001E01; 220
FD : Transport; Monoxyde carbone; Monoxyde de carbone; Mousson été; Modèle; Ozone; Traceur; Observation par satellite; Troposphère; Stratosphère; Anticyclone; Circulation; Air; Pollution; Altitude; Tropopause; Monde; Champ météorologique; Simulation; Eté; Hyperfréquence; Chimie atmosphérique; Etude expérimentale; Transformation Fourier; Convection; Asie Sud Est; Inde; Moyen Orient
FG : Asie
ED : transport; carbon monoxide; Carbon monoxide; Summer monsoon; models; ozone; tracers; Satellite observation; troposphere; stratosphere; Anticyclone; circulation; air; pollution; altitude; Tropopause; global; Meteorological field; simulation; Summer; microwaves; Atmospheric chemistry; experimental studies; Fourier transformation; convection; Southeast Asia; India; Middle East
EG : Asia
SD : Transporte; Carbono monóxido; Monzón verano; Modelo; Ozono; Trazador; Observación por satélite; Estratosfera; Anticiclón; Polución; Altitud; Tropopausa; Mundo; Campo meteorológico; Simulación; Verano; Convección; India; Oriente Medio
LO : INIST-3144.354000188450170370
ID : 09-0250319

Links to Exploration step

Pascal:09-0250319

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)</title>
<author>
<name sortKey="Park, Mijeong" sort="Park, Mijeong" uniqKey="Park M" first="Mijeong" last="Park">Mijeong Park</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Randel, William J" sort="Randel, William J" uniqKey="Randel W" first="William J." last="Randel">William J. Randel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa K" sort="Emmons, Louisa K" uniqKey="Emmons L" first="Louisa K." last="Emmons">Louisa K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Livesey, Nathaniel J" sort="Livesey, Nathaniel J" uniqKey="Livesey N" first="Nathaniel J." last="Livesey">Nathaniel J. Livesey</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">09-0250319</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0250319 INIST</idno>
<idno type="RBID">Pascal:09-0250319</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000090</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)</title>
<author>
<name sortKey="Park, Mijeong" sort="Park, Mijeong" uniqKey="Park M" first="Mijeong" last="Park">Mijeong Park</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Randel, William J" sort="Randel, William J" uniqKey="Randel W" first="William J." last="Randel">William J. Randel</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, Louisa K" sort="Emmons, Louisa K" uniqKey="Emmons L" first="Louisa K." last="Emmons">Louisa K. Emmons</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Livesey, Nathaniel J" sort="Livesey, Nathaniel J" uniqKey="Livesey N" first="Nathaniel J." last="Livesey">Nathaniel J. Livesey</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2009">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anticyclone</term>
<term>Atmospheric chemistry</term>
<term>Carbon monoxide</term>
<term>Fourier transformation</term>
<term>India</term>
<term>Meteorological field</term>
<term>Middle East</term>
<term>Satellite observation</term>
<term>Southeast Asia</term>
<term>Summer</term>
<term>Summer monsoon</term>
<term>Tropopause</term>
<term>air</term>
<term>altitude</term>
<term>carbon monoxide</term>
<term>circulation</term>
<term>convection</term>
<term>experimental studies</term>
<term>global</term>
<term>microwaves</term>
<term>models</term>
<term>ozone</term>
<term>pollution</term>
<term>simulation</term>
<term>stratosphere</term>
<term>tracers</term>
<term>transport</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transport</term>
<term>Monoxyde carbone</term>
<term>Monoxyde de carbone</term>
<term>Mousson été</term>
<term>Modèle</term>
<term>Ozone</term>
<term>Traceur</term>
<term>Observation par satellite</term>
<term>Troposphère</term>
<term>Stratosphère</term>
<term>Anticyclone</term>
<term>Circulation</term>
<term>Air</term>
<term>Pollution</term>
<term>Altitude</term>
<term>Tropopause</term>
<term>Monde</term>
<term>Champ météorologique</term>
<term>Simulation</term>
<term>Eté</term>
<term>Hyperfréquence</term>
<term>Chimie atmosphérique</term>
<term>Etude expérimentale</term>
<term>Transformation Fourier</term>
<term>Convection</term>
<term>Asie Sud Est</term>
<term>Inde</term>
<term>Moyen Orient</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ∼12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (∼16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>114</s2>
</fA05>
<fA06>
<s2>D8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PARK (Mijeong)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RANDEL (William J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EMMONS (Louisa K.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIVESEY (Nathaniel J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Jet Propulsion Laboratory, California Institute of Technology</s1>
<s2>Pasadena, California</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>D08303.1-D08303.11</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000188450170370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0250319</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ∼12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (∼16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="02" i2="2">
<s0>001E01</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>220</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Transport</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>transport</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Monoxyde carbone</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>carbon monoxide</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Monoxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Carbon monoxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Carbono monóxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Mousson été</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Summer monsoon</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Monzón verano</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>ozone</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>tracers</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Observation par satellite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Satellite observation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Observación por satélite</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Stratosphère</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>stratosphere</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Estratosfera</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Anticyclone</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Anticyclone</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Anticiclón</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Circulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>circulation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Air</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>air</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Pollution</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>pollution</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Polución</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Altitude</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>altitude</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Altitud</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Tropopause</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tropopause</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Tropopausa</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Monde</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>global</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Champ météorologique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Meteorological field</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Campo meteorológico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>simulation</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Eté</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Summer</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Verano</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Hyperfréquence</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>microwaves</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Etude expérimentale</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>experimental studies</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Transformation Fourier</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>Fourier transformation</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Convection</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>convection</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Convección</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Asie Sud Est</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>Southeast Asia</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="27" i2="2" l="FRE">
<s0>Inde</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="27" i2="2" l="ENG">
<s0>India</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="27" i2="2" l="SPA">
<s0>India</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="28" i2="2" l="FRE">
<s0>Moyen Orient</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="28" i2="2" l="ENG">
<s0>Middle East</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC03 i1="28" i2="2" l="SPA">
<s0>Oriente Medio</s0>
<s2>NG</s2>
<s5>63</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Asie</s0>
<s2>564</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>Asia</s0>
<s2>564</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Asia</s0>
<s2>564</s2>
</fC07>
<fN21>
<s1>187</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 09-0250319 INIST</NO>
<ET>Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)</ET>
<AU>PARK (Mijeong); RANDEL (William J.); EMMONS (Louisa K.); LIVESEY (Nathaniel J.)</AU>
<AF>Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut., 2 aut., 3 aut.); Jet Propulsion Laboratory, California Institute of Technology/Pasadena, California/Etats-Unis (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2009; Vol. 114; No. D8; D08303.1-D08303.11; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>[1] Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ∼12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (∼16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.</EA>
<CC>001E; 001E01; 220</CC>
<FD>Transport; Monoxyde carbone; Monoxyde de carbone; Mousson été; Modèle; Ozone; Traceur; Observation par satellite; Troposphère; Stratosphère; Anticyclone; Circulation; Air; Pollution; Altitude; Tropopause; Monde; Champ météorologique; Simulation; Eté; Hyperfréquence; Chimie atmosphérique; Etude expérimentale; Transformation Fourier; Convection; Asie Sud Est; Inde; Moyen Orient</FD>
<FG>Asie</FG>
<ED>transport; carbon monoxide; Carbon monoxide; Summer monsoon; models; ozone; tracers; Satellite observation; troposphere; stratosphere; Anticyclone; circulation; air; pollution; altitude; Tropopause; global; Meteorological field; simulation; Summer; microwaves; Atmospheric chemistry; experimental studies; Fourier transformation; convection; Southeast Asia; India; Middle East</ED>
<EG>Asia</EG>
<SD>Transporte; Carbono monóxido; Monzón verano; Modelo; Ozono; Trazador; Observación por satélite; Estratosfera; Anticiclón; Polución; Altitud; Tropopausa; Mundo; Campo meteorológico; Simulación; Verano; Convección; India; Oriente Medio</SD>
<LO>INIST-3144.354000188450170370</LO>
<ID>09-0250319</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000090 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000090 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:09-0250319
   |texte=   Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023